WIKINDX

WIKINDX Resources

Saggau, D., Rezaei, M., Bischl, B., & Chalkidis, I. Efficient Document Embeddings via Self-Contrastive Bregman Divergence Learning. 
Resource type: Journal Article
BibTeX citation key: anon.143
View all bibliographic details
Categories: General
Creators: Bischl, Chalkidis, Rezaei, Saggau
Attachments   URLs   https://www.semant ... 2c08318902c08a3e63
Abstract
It is shown that overall the combination of a self-contrastive siamese network and the proposed neural Bregman network outperforms the baselines in two linear classification settings on three long document topic classification tasks from the legal and biomedical domains. Learning quality document embeddings is a fundamental problem in natural language processing (NLP), information retrieval (IR), recommendation systems, and search engines. Despite recent advances in the development of transformer-based models that produce sentence embeddings with self-contrastive learning, the encoding of long documents (Ks of words) is still challenging with respect to both efficiency and quality considerations. Therefore, we train Longfomer-based document encoders using a state-of-the-art unsupervised contrastive learning method (SimCSE). Further on, we complement the baseline method -- siamese neural network -- with additional convex neural networks based on functional Bregman divergence aiming to enhance the quality of the output document representations. We show that overall the combination of a self-contrastive siamese network and our proposed neural Bregman network outperforms the baselines in two linear classification settings on three long document topic classification tasks from the legal and biomedical domains.
  
WIKINDX 6.11.0 | Total resources: 209 | Username: -- | Bibliography: WIKINDX Master Bibliography | Style: American Psychological Association (APA)